Society for Immunotherapy of Cancer SICC2024

39th Annual Meeting & Pre-Conference Programs

Advance the science, discover breakthroughs and educate the world on cancer immunotherapy. #SITC24

Key Learnings From BDC-1001 Phase 1 FIH Dose Escalation Trial Inform Next-Generation ISACs

Jason Ptacek¹, Andrew Luo¹, Cecelia I. Pearson¹, Ecaterina E. Dumbrava², Joshua Z. Drago³, Marie Du¹, Milan Mangeshkar¹, Ming Yin¹, Tai Yu¹, Han K. Kim¹, John Tomaro¹, Lindsey Gourley¹, Edith A. Perez¹, Michael N. Alonso¹, Dawn E. Colburn¹, Lu Xu¹

Institutions:

Society for Immunotherapy of Cancer

- 1. Bolt Biotherapeutics, Redwood City, CA, USA
- 2. The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- 3. Memorial Sloan Kettering Cancer Center, New York, NY, USA

39th Annual Meeting & Pre-Conference Programs

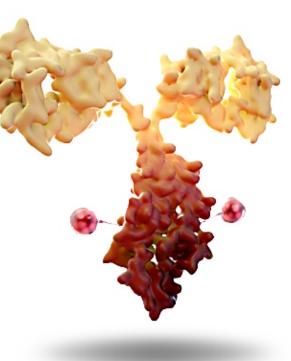
Author Disclosures and Funding

Jason Ptacek is an employee of Bolt Biotherapeutics.

Nivolumab was provided by Bristol Myers Squibb.

This study is funded by Bolt Biotherapeutics (NCT 04278144).

Boltbody[™] Immune-Stimulating Antibody Conjugate (ISAC)



First-Generation ISAC

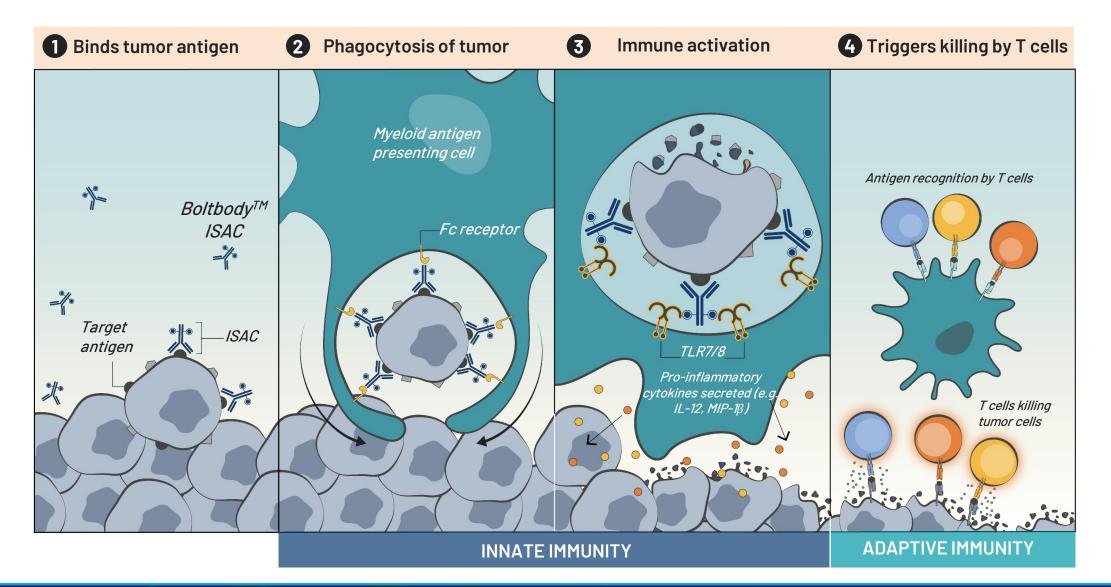
- Monoclonal antibody geolocates ISAC to HER2 antigen on surface of a tumor cell
- Non-cleavable, cellimpermeable TLR7/8 agonist payload

Outcome in FIH Trial

- Evidence of immunological activity
- Safe and well-tolerated
- 29% ORR at RP2D (evaluable patients)

Boltbody[™] ISAC

Next-Generation ISAC


- Enhanced tumor-targeting antibody with active Fc region triggering phagocytosis
- Enhanced potency and optimized conjugation chemistry with non-cleavable linkers

Significant Biologic Advantages

- Enhanced immune system activation with lower tumor antigen requirement
- Superior anti-tumor efficacy
- Maintains compelling safety profile

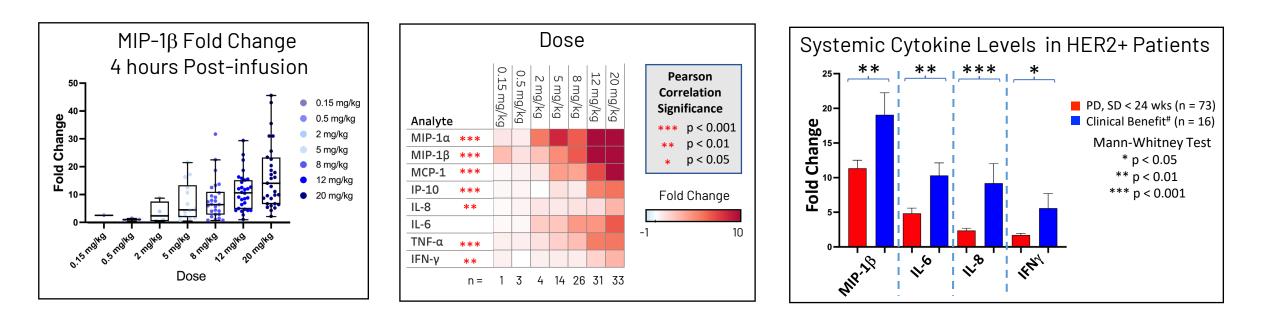
Boltbody[™] Immune-Stimulating Antibody Conjugate (ISAC)

BBI-20201001 Trial Overview and Translational Questions

- Phase 1 dose escalation completed & RP2D selected¹
 - 18 cohorts with 16 different HER2-expressing² solid tumor types
 - doses: 0.5 20 mg/kg IV; schedules: q3w, q2w, q1w
 - BDC-1001 well tolerated up to 20 mg/kg q1w as monotherapy and in combination with nivolumab at 240 mg q2w (no MTD identified)
 - Clinical activity in a heavily pre-treated patient population: 1 CR, 5 PRs, 14 SDs ≥ 24 weeks

• Translational questions

- What is the immune activity of BDC-1001 in both peripheral blood and tumor tissue?
 - Does BDC-1001 induce recruitment of myeloid cells and T cells into tumors?
 - Does BDC-1001 induce innate and adaptive immune activation in tumors?
- What patient groups are most responsive to BDC-1001 immune activity?

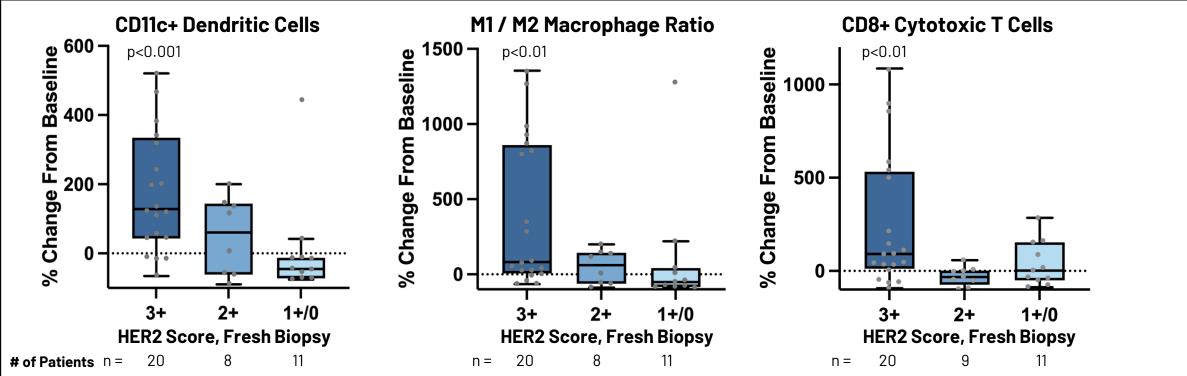

¹Li B, et al. Ann Oncol. 2023;34(suppl_2):S458-S497 (ESMO, 2023) ²HER2-expressing: Either HER2+ (IHC 3+ or HER2 gene amplification) or HER2 Low (IHC 2+ without gene amplification) RP2D = Recommended Phase 2 Dose, MTD = Maximum Tolerated Dose, IV = Intravenous

BDC-1001 Elicits Proinflammatory Cytokines, Associated With Clinical Benefit

BOLT BIOTHERAPEUTICS

- Fold change in biomarkers significantly correlated to dose
- Higher peripheral blood cytokine levels are associated with clinical benefit

[#]Clinical benefit = CR, PR, or SD for \ge 24 weeks


Patient population: HER2+ by enrollment status, doses 8 – 20 mg/kg, schedules q1w, q2w, q3w; 73 PD, SD < 24 wks patients comprised of 50 monotherapy and 23 combination; 16 clinical benefit patients comprised of 9 monotherapy and 7 combination

BDC-1001 Monotherapy Drives Immune Cell Infiltration in HER2 IHC 3+ Tumors

- BDC-1001 shows the potential to alter the tumor microenvironment
- These changes were statistically significant in HER2 IHC 3+ tumors only

Multiplex IHC assays were utilized to enumerate immune populations in baseline and on-treatment biopsies collected at 4 weeks after first dose Analysis of blended monotherapy and combination data showed similar trends

BDC-1001 Monotherapy Drives Increased Immune Gene Signatures in HER2 IHC 3+ Tumors

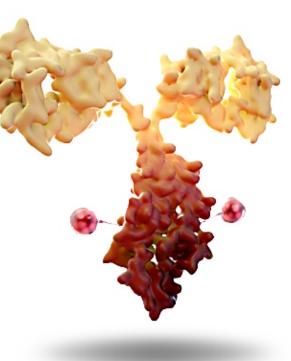
• Transcriptomic analysis performed by RNAseq of baseline and on-treatment tumor biopsies

• Activation of TLR, innate and adaptive immunity pathways in on-treatment tumor biopsies

• Statistically significant activations in HER2 3+ tumors (n=13)

Fresh Biopsy HER2 Score						
	Gene Signatures	3+	2+	1+/0		
TLR Pathway -	Toll Like Receptor Signaling Pathway (KEGG)	**			Log2 Fold Change	
	Toll Like Receptor Signaling Pathway (Wikipathways)	**				
	Myeloid Activation (Kremenovic et al.)	**			-0.75 0.7	′5
Myeloid . Activation	Myeloid Compartment (Nanostring)	*			Permutation Test * p < 0.10 ** p < 0.05 *** p < 0.01	
	Myeloid Cell Development (Brown et al.)	**				
	Myeloid Cell Activity (Nanostring)	*				
	Innate Immunity (Wang et al.)	**				
	Innate Immune System (Reactome)	*			ana p < 0.01	
	Prostaglandin Signaling (Wikipathways)	*			Statistical analysis	
	Macrophages (Nanostring)	*			included adjustment	:
	Macrophage Functions (Nanostring)	*			for multiplicity	
	Macrophage Markers (Wikipathways)	**				
Antigen Presentation	Dendritic Cell (Hoek et al.)	***				
	Antigen Processing (Nanostring)	*				
	Antigen Presentation (Nanostring)	**				
	Cancer Antigen Presentation (Nanostring)	*				
	Dendritic Cell And Induction Of Ifn1 (Wikipathways)	**				
	Signaling During Sarscov2 Infection (Wikipathway)	**				
	IFNg (Poplar et al.)	*				
Adaptive	IFNg (Ayers et al.)	**				
Immunity	T Cell Inflamed 18 gene (Ayers et al.)	*				
	T Cell Priming and Activation (Nanostring)	*				
	# of Monotherapy Patients	13	8	7		

Boltbody[™] Immune-Stimulating Antibody Conjugate (ISAC)



First-Generation ISAC

- Monoclonal antibody geolocates ISAC to HER2 antigen on surface of a tumor cell
- Non-cleavable, cellimpermeable TLR7/8 agonist payload

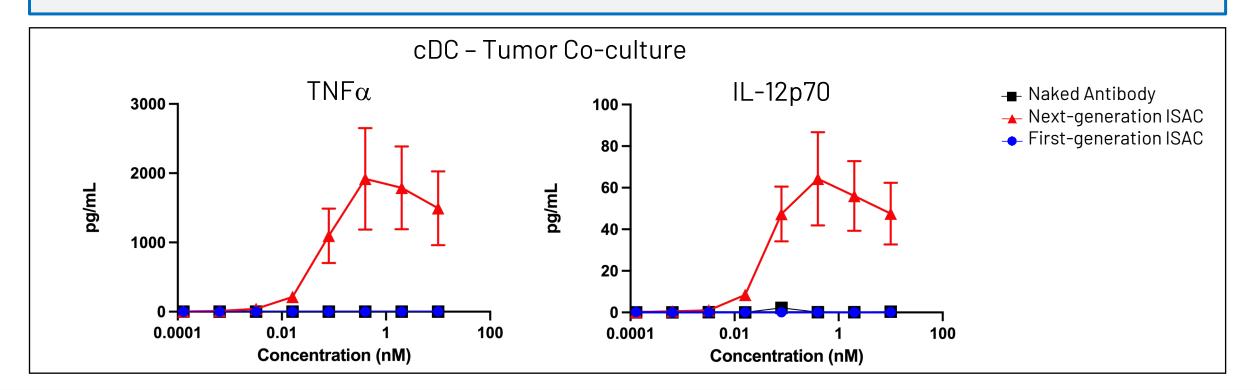
Outcome in FIH Trial

- Evidence of immunological activity
- Safe and well-tolerated
- 29% ORR at RP2D (evaluable patients)

Boltbody[™] ISAC

Next-Generation ISAC

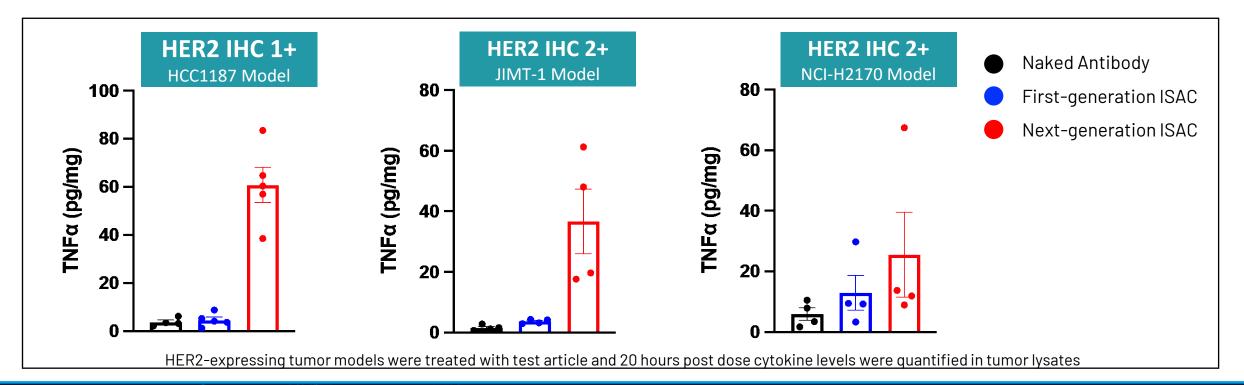
- Enhanced tumor-targeting antibody with active Fc region triggering phagocytosis
- Enhanced potency and optimized conjugation chemistry with non-cleavable linkers


Significant Biologic Advantages

- Enhanced immune system activation with lower tumor antigen requirement
- Superior anti-tumor efficacy
- Maintains compelling safety profile

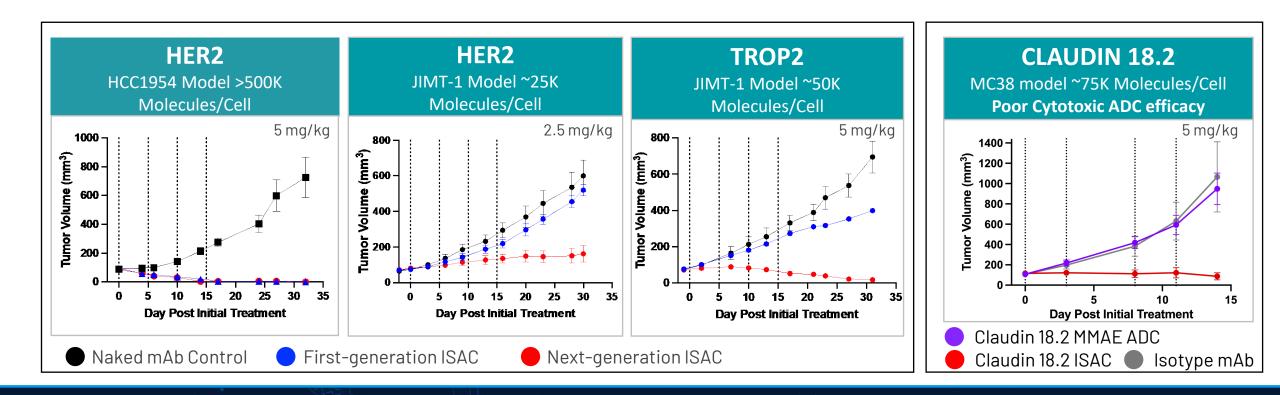
Next-Generation ISACs Show Enhanced Immune Activation In Vitro in Preclinical Models With Lower Antigen Levels

BOLT


- Next-gen ISACs outperforms first-gen ISAC in cDC-tumor co-culture with low CLDN18.2 (IHC 1+) expressing PA-TU-8988S tumor cells
- Next-generation CLDN18.2 ISAC was tolerated in NHP at the highest dose evaluated

Next-Generation ISACs Show Enhanced Immune Activation *In Vivo* in Preclinical Models With Lower Antigen Levels

- Next-generation ISAC produced greater levels of proinflammatory cytokines across all tumor models
- The advantage of the next-generation ISAC was particularly noticeable in lower-antigen tumor models



Next-Generation ISACs Outperform First-Generation ISACs and Cytotoxic ADC in Models With Lower Tumor Antigen Expression

- Multiple tumor antigens with varying expression levels were evaluated with different ISACs
- Next-generation ISACs show greater tumor growth inhibition across models compared to firstgeneration ISACs and cytotoxic ADC

Conclusions

- BDC-1001 drives immune activation, leading to anti-tumor activity
 - Stimulates the production of chemokines and cytokines, mobilizes immune cells and promote immune cell activation related to TLR signaling, innate immunity, antigen presentation, and IFN and T cell inflamed signatures
 - Pharmacodynamic changes were statistically significant in patients with HER2 IHC 3+ tumors and trended higher in patients achieving clinical benefit
- Next-generation ISACs have shown superior immunological activity and efficacy in tumors with lower antigen density in preclinical models¹
- These enhanced next-generation ISACs outperform ADCs in preclinical studies and merit clinical advancement to assess their potential in transforming cancer treatment paradigms

¹SITC Abstract Number: 1052 Title: Preclinical Activity of BDC-4182, a Claudin 18.2-Targeting ISAC with Enhanced Potency and an Encouraging Safety Profile

Thank You

The authors thank all participating patients and their families and all study co-investigators and research coordinators.

